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383. T h e  Computation of Velocities and Kinetic Coizstants of 
Reactions, with Particular Reference to Enxyme-catalysed Processes. 

By D. T. ELMORE, A. E. KINGSTON, and D. B. SHIELDS. 

Curve-fitting procedures involving orthogonal polynomials are described 
which permit the computation of reaction velocities from kinetic data. The 
order of polynomial used is decided by applying Student’s t test of significance 
to the coefficient of the orthogonal polynomial of highest order. Kinetic data 
a t  equal or unequal time intervals may be used. A weighted least-squares 
procedure is given for determining the Michaelis constant and maximum 
velocity of enzyine-catalysed reactions by computing the linear regression 
curves of l / v  on l/[S] or [Sjlv on [S], where v and [S] are, respectivcly, the 
velocity and the substrate concentration. The weighted deviation of the 
worst point is tested for significance. A similar procedure is used for com- 
puting energies, enthalpies, and entropies of activation. A11 calculations 
have been programmed for the DEUCE digital computer.* 

BOOMAN and NIEMANN have described an empirical method of computing the velocity 
a t  zero time of enzyme-catalysed reactions from experimental data recording the progress 
of the reaction at  equal intervals of time. In a subsequent brief communication,2 this 

* Copies of these programnies and operating instructions are alrailable on application to the first 
author. 

Booman and Niemann, J .  Anaer. C h e w  SOC., 1956, 78, 3642. 
Abrash. Iiurtz, and Niemann, Biochim. Biophys. -4cta,  1960, 45, 378. 
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procedure was linked to the computation of Michaelis constants and was programmed 
for the DATATRON 220 computer. We have generalized this treatment by making it 
possible (a) to compute the velocity at  any value of the independent variable which is 
included in the data, (b)  to use any number of equidistant points up to 20, and (c) to com- 
pute initial velocities from experimental runs in which the value of the dependent variable 
a t  zero time is uncertain. In a later development, up to 32 unequally spaced points can 
be used in calculating up to 16 velocities a t  any value of the dependent variable. The two 
methods have been separately programmed for the DEUCE digital computer. 

A function, y = f(x), can be fitted to a set of (n + 1) points a t  equidistant ( A x )  values 
of the independent variable, the interval number being specified by z(z = 0, 1 - - - n) ,  
such that x = Ax.2, by using the orthogonal polynomials: 1,8 

In practice, it was unnecessary to use polynomials higher than fifth order ( K  < 5) .  For 
convenience, all the Pk,&)  values are multiplied by Pk,n(0) in the subsequent treatment 
in order to give integral values, as suggested by Milne.3 Hence we can write: 

122 ~ O Z ( Z  - 1) 2OZ(Z - l ) ( Z  - 2) 
1 - __ + __-- - -~~ 

It 9t(n - 1) n(t2 - l ) (n  - 2)  

and 

'The slope at  any interval, z ,  can be obtained by differentiation of equation (3) : 

Milne, " Numcrical Calculus," Princeton Uuiv. Press, Princeton, New Jersey, 1949, p. 257. 



2072 Elmore, Kingstola, and Shields : The Computation of 

where a,' = -2Pl,n(0)/n, 

a2' = Pz,,(O)(12z - 6n)/n(n - l),  

a3' = P3,n(0)(-12n2 + 6n + 602% - 60z2 - 4)/ut(.tz - 1)(a - 2)) 

a4' = Pq, n(0) (- 20ns + 30a2 - 50n + 28023 - 420x2n + 
18O~ut~ - 602% 1002)/n(% - l)(n - 2)(n - 3 ) J  

and 

a5' = P5, .(0)(-30n4 + 90n3 - 280n2 + lOOn - 126024 - 1260z2 + 420zn3 + 25209n 
-1680z2n2 - 420zn2 + z2n + 1260zn - 48)/n(n - l)(a - 2)(n - 3)(n. - 4). 

The gradient coefficients, ak ' ,  can now be evaluated for sets of data comprising any number 
of points and at any interval. The coefficients yk,n are determined for a particular set of 
data from equation (2) and the requisite values of Pk,&) quoted by Milne.3 Substitution 
in equation (4) then affords the gradient, and the velocity is given by: 

Application of the method of least squares leads to the equation : 

for the variance of the dependent variable, and the significance of the coefficient y k , n  can 
be tested by evaluating Student's t from the expression: 

The standard deviation of the gradient can be calculated from the equation: 

S d y / d t  = - L n , n s y ,  

where 

The values of L m , n ,  like those of the gradient coefficients, ak ' ,  are independent bl LllG ,xperi- 
mental data. The standard deviation of the velocity is given then by: 

SV = L m , n S y / A X .  

In kinetic studies, y is some function which represents the concentration of starting 
materials or products, while x represents a time-scale. In  our own case, y has usually 
taken the form of (a) moles of alkali or acid added by an autotitrator after a reaction at 
constant pH, or (71) optical density at a fixed wavelength. Experimental difficulties 
sometimes preclude a satisfactory start to a kinetic run, and there are two ways of dealing 
with this situation. Readings can be taken from the experimental trace starting at a 
point removed from zero time (Ax) .  This is made the interval in the calculation and 
z is set a t  -1 in order to calculate the coefficients ak' and Lm, . .  Because this procedure 
aniounts to an extrapolation and because the interval is frequently larger than would 
normally be used, poor estimates of the gradient at zero time occasionally ensue. The 
alternative procedure involves using unequally spaced points so that poor regions in the 
trace can be omitted. The reading at  zero time can be included or not as desired. The 
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numerical and statistical treatments for this, second method are similar to those in the 
foregoing paragraphs. In equation (l), however, z is a linear transformation of the inde- 
pendent variable, x ,  such that -1 < z < 1. This transformation is effected by the 
introduction of two parameters, a and b, such that a = (xmx. + x ~ J / 2  and b = (xmx. - 
xmin . ) /2 ;  then z, = (xi - a)/b. In this case, the relevant orthogonal polynomials are 
most easily derived 4 from the recurrence relationship : 

where 

and 

m 
If we write Pm(zi) = 2 K,,,&, the coefficients K m , k  can be obtained from the analogous 

k = O  
recurrence relationship : 

It is convenient to write the expansion in z in the form: 

where 

and 'yi follows from equation (2). 
Evaluation of the variance of the dependent variable and the test of significance of 

the coefficients y j  are carried out as in the case where equally spaced intervals are used. 
The gradient at any point xi is then calculated from the equation : 

and the standard deviation of the gradient is given by: 

Then 

One set of data can be processed by either method on the DEUCE digital computer in 
45-180 seconds, depending on the number of experimental points and the number of 
gradients required. The programmes are looped so that the order of the polynomial is 
increased without manual intervention. The t test is applied at  each loop and, when this 
is not significant, the polynomial of unit lower order is evaluated. 

Table 1 illustrates the use of both programmes to compute the initial velocity of a 
reaction (Figure) when a poor start required extrapolation. It will be seen that, in this 
example, variation of the number and spacing of points does not grossly affect the com- 
puted velocity or its standard deviation. 

* (a) Forsythe, J. Soc. Indust. AppZ. Math., 1957, 5, 74;  (b)  Guest, " Numerical Methods of Curve- 
fitting," Cambridge Univ. Press, 1961, p. 175. 
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2 4 6 8 
T i m e  (min.) 

Computation of initial velocity of the chymotrypsin-catalysed hydrolysis of methyl 
hippurate. 

TABLE 1. 

Computation of initial velocity of the chymotrypsin-catalysed hydrolysis of methyl 
hippurate by using different numbers and spacings of points. 

Velocities (lo%,; moles 1.-1 mh-1)  with standard deviations are given at the bottom of the Table. 
The figures in parentheses indicate the number of points, counted from the earliest observation in each 
column, used for each computation. (Sodium hydroxide = 0-1234~.) 

x (min.) 10sy 

0.5 2.72 
1.0 4.18 
1.5 5.74 
2.0 7.06 
2.5 8.46 
3-0 9.84 
3.5 11.06 
4-0 12.28 
4.5 13.52 
5.0 14.66 
5.5 16.78 
6.0 16-86 
6.5 17.90 
7.0 18-90 
7.5 19-90 

3.921 f 0.075 (8) 
3-872 & 0.038 (11) 
3.834 & 0.021 (15) 

(Ax = 0.5) (c.c./c.c.) 
x (min.) 

(AX = 0.75) 
0.75 
1.50 
2.25 
3.00 
3.75 
4.50 
5.25 
6-00 
6.75 
7.50 
8.25 

1 0 3 ~  x (min.) I osy 
(c.c./c.c.) (Ax = 1.0) (c.c./c.c. 

3.52 1.0 4.18 
5.74 2.0 i.06 
7.84 3-0 9.84 
9-84 4.0 12.28 

11-72 5.0 14.66 
13.52 6.0 16.86 
15.14 7.0 18.90 
16.86 8.0 20.82 
18.34 
19.90 
21.24 

3.855 Ifi: 0.049 (8) 
3.963 f 0.07i (11) 

3.840 f 0.035 (8) 

x (min.) 1 0 9  
) ( A x  irregular) (c.c./c.c.) 

0-75 3.52 
0.95 4-02 
1.25 4.98 
1.60 6.00 
2-00 7.06 
2-45 8.36 
2.95 9.10 
3.50 11-06 
4.10 12.54 
4-76 14.02 
5.45 15.66 
6.20 17.20 
1.00 18.90 

3.897 f 0.115 (8) 
3.905 f 0.077 (9) 
3,927 f 0-045 (10) 
3.873 -& 0-048 (11) 
3.873 f 0.036 (12) 
3.829 & 0.034 (13) 

For an enzyme-catalysed reaction, the steady-state velocity, D, at  a given substrate 
concentration, [S] , is given by the Michaelis-Menten equation : 

where V is the maximum velocity attained at infinite substrate concentration and K M  is 
the Michaelis constant. This equation can be rearranged in several ways in order to obtain 
linear relationships between functions of v and [S] : 
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There is no general agreement about which is the best form for computing K3f and V ;  5-7 

in addition, opinions differ about the use of weighted and unweighted observations in the 
least-squares method for computing the regression lines relating the variables in the above 
equations. The various arguments will not be reviewed here, but it may be noted6 
that equation (7) is inconvenient for statistical purposes, since both variables, v/[S] and 
v, are liable to experimental error. 
to either equation (5) or (6), and the assumptiofi that [S] is free from error, leads to the 
following expressions for 17 and KJr : 

Application of the weighted least-squares method 

and 

where wi are the weights of the velocities vi. The most efficient statistical weight is the 
reciprocal of the variance, i.e., wi = 1/oU2. Application of the unweighted least-squares 
method to equation (5) (ie., ol/a = constant) is numerically equivalent to using the weighted 
procedure in which ov x v2, since ollV = cv/v2. Similarly, application of the unweighted 
procedure to equation (6) (i.e., G ~ ~ ~ / ~  = constant) is numerically equivalent to using the 
weighted technique in which o, cx v2/[S] ,  since ~ [ s ~ / ~  = [S]av/v2. Wilkinson has pointed 
out that, if experimental determinations of velocity a t  different substrate concentrations, 
such that [ S ] / K ,  varies from 1/3 to 3, have a constant variance, the relative weights of 
l / v  will varyby a factor of 81, while the relative weights of [S]/v will change by a factor 
of only 16/9. I t  should be pointed out, however, that if the measurements of velocity 
have a standard deviation which is proportional to the magnitude of the velocity, the 
ranges of the relative weights of l / v  and [S]/v are identical. If [S]/K,  varies from 1/3 
to 3, the relative weights of l / v  and [S] /v  change by a factor of 9. The last supposition, 
that o, cc v ,  leads to the equations: 6,8 

and 

Rather than make any suppositions about the relative weights to be attached to experi- 
mental determinations of reaction velocity, we prefer to use the estimated value sFi, as 

Hofstee, Nature, 1959, 184, 1296; Dixon and Webb, ibid., p. 1298. 
Johansen and Lumry, Compt. rend. Truv. Lnb. Curlsberg, 1961, 32, 185. 
Wilkinson, Biochem. J. ,  1961, 80, 324. 

* Stockell and Smith, J .  Riol. C h ~ m . ,  1957, 227, 1 .  
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determined in the computation of velocity by the curve-fitting procedure outlined in the 
first part of this paper, in order to compute 1/s2vi. The latter is an estimate of wi and is 
used in equations (8) and (9). In this way, reasonable account is taken of whether extra- 
polation has had to be employed to calculate the velocity and also of the order of the 
polynomial required to fit the experimental points. Undue disparity of weighting is 
avoided by using approximately the same number of experimental points for each velocity 
computation. 

By using the method of weighted least squares to compute the regression line of 110 on 
l/[S], estimates of the variance of the ordinal intercept, C,, and slope, C,, are given by: 

and s2c, = s2 2 w i v t / [ T  wivi4 2 wiv,4/[Sil2 - (7 wivi4/ [Si ] )2] ,  
t 2 

where 

and n is the number of pairs of observations of vi and [SJ. 
deviation of V ,  s y ,  is given then by the expression: 

An estimate of the standard 

Since KM = CJC,  and since C, and C, are not stochastically independent, an estimate 
of the variance of K M ,  stKar, is given by the equation : 

It is desirable to test the experimental data in order to see if any points can safely be 
rejected on the grounds that their deviations from the fitted line depart significantly from 
normal distributions. After the regression line has been obtained, and hence KM and 
V from all the experimental data, the calculated value of the velocity, v ' i ,  is evaluated for 
each substrate concentration used. Weighted deviations, l/G(vi - v?/vi ' ) ,  are calculated, 
and the point, for which l l / E ( v j  - vi2/vi')  1 is a maximum, is determined. The experimental 
observations corresponding to this point ([S,], v m ,  wm) are removed from the remainder of 
the data, and a new regression line is computed. The calculated velocity, Urn', at the 

Ref. 4 ( b ) ,  p. 98. 
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substrate concentration (S,] is computed from the new regression line; from this the 
corrected maximum weighted deviation, I&,~(v, - vm2/vnz’) is evaluated. The standard 
deviation, s‘, of the dependent variable, and hence of the deviations of the dependent 
variable; for the second regression line is calculated according to equation (10). The 
significance of the corrected maximum weighted deviation from the second regression line 
is tested by evaluating Student’s t from the expression : 

Computation stops at this stage, and the values of KM and V from the first regression 
line are punched out, unless the calculated value of t exceeds the value in the Tables. In 
the latter case, the data corresponding to the second worst point are removed, and the 
above procedure is repeated until the t test is passed or until only three points remain. 
This procedure for testing the homogeneity of residuals is based on that described for 
unweigh ted samples.l* 

TABLE 2. 
Computation of KM and 

Initial substrate concn. 
(lOJ[S] ; mole l.-l) 

20.0 
12.0 
8.0 
6.4 
4.8 
3.2 
1.6 

V for the methyl hippurate-chymotrypsin system a t  
pH 7.8 and 25”. 

Velocity 
(10%; moles 1.-’ min.- 

4.8242 
4.0094 
4.1194 
3.7397 
3.2908 
2.8715 
1.8940 

Standard deviation 

0.0217 
0.0336 
0.0273 
0.0133 
0.0185 
0.0600 
0.0268 

.l) (10% moles 1.-1 min.-l) 

10SKM( moles 1.-1) lO4V (moles 1.-1 rnin.-l) talc. tg5% (Tables) 
First computation (7 points) . . . . . . 3.105 f 0.343 5.527 f 0.187 3.80 2.78 
Second computation (6 points) ... 3.231 f 0.194 5.625 f 0.108 2-17 3.18 

This point was rejected by the t test. 

An example of the use of this method of computing KM and V is given in Table 2; 
these particular data contain a point which was rejected as a result of applying the 
statistical test above. I t  will be noticed that the standard deviations of KM and V are 
considerably reduced in the second computation from which this point was omitted. 

We have also applied the weighted least-squares procedure to the problem of computing 
kinetic activation constants. The regression line of logek on 1/T is derived in order to 
calculate the parameters in the equations : 

log, k = E,/RT + log, A 

where E, is the energy of activation, AH:,  A S ,  and AG: are the enthalpy, entropy, and 
free energy of activation at  the absolute temperature To, A is the frequency factor, and 
k and h are Boltzmann’s and Planck’s constant, respectively. The data consist of rate 
constants, ki, with standard deviations, Ski at  n different temperatures Ti. The relevant 

Acton, “ Analysis of Straight-Line Data,” John Wiley & Sons, Inc., New York, 1959, p. 226. 
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equations, when Tj is assumed to be free from error, to compute the parameters of equation 
(11) are: 

1 2 wi 2 w&ge k i ) /T i  - 2 wi(Qe hi) 2 wi/Ti 

2 wi 2 wi/Ti2 - (7 w i / T i r  
E - R - t L L - - . z - -  __ i a - -  [ 

i i  

and 

It may be noted here that application of the unweighted least-squares procedure to 
equation (11) (k, log, ki = constant) is equivalent to using the weighted method in which 

Estimates of the 
ski OC ki. 

The remaining parameters can be derived from equations (12-14). 
variances of the kinetic constants are given by the equations: 

and 

The experimental point having the greatest weighted deviation, I &&(loge ki - loge k:’) I 
from the regression line, where log, kli is the fitted value of the dependent variable, is 
determined. The statistical test to decide if this point can be rejected then follows exactly 
the procedure outlined above in the computation of Klf and V .  The programme is looped 
so that if a point is rejected a new set of kinetic constants is punched out. 

The above programmes have been extensively and usefully used by us in kinetic studies 
of enzyme-catalysed and other reactions. 

DEPARTMENTS OF BIOCHEMISTRY AND APPLIED MATHEMATICS, 
QUEEN’S UNIVERSITY, BELFAST. [Received, August ls t ,  1962.1 

l1 Curragh and Elmore, J., 1962, 2948; Baines and Elmore, Bull. SOC. Chim. biol., 1960, 42, 1305 
and unpublished work. 


